Ferritin Serum
Test Details
Use
Diagnose hypochromic, microcytic anemias. Decreased in iron deficiency anemia and increased in iron overload. Ferritin levels correlate with and are useful in evaluation of total body storage iron. In hemochromatosis, both ferritin and iron saturation are increased. Ferritin levels in hemochromatosis may be >1000 ng/mL.
Additional Information
Ferritin is found in virtually all cells of the body and serves as the cellular storage repository for iron.2,3 Ferritin is a macromolecule with an average molecular weight of near 440 kD that varies depending on the iron content. Ferritin consists of a protein shell (apoferritin) of 24 subunits surrounding an iron core consisting of up to 4000 ferric iron ions. The majority of ferritin iron stores are found in the liver, spleen, and bone marrow. Ferritin is present in small concentration correlates with total-body iron stores, making its measurement valuable for the assessment of disorders of iron metabolism.
Low levels of ferritin can be found when iron stores are exhausted, well before the serum iron level has become affected. In the setting of anemia, low serum ferritin is a very specific biomarker for iron deficiency anemia. In fact, there is no clinical situation other than iron deficiency in which extremely low values of serum ferritin are seen; however, some clinical states involving infection or inflammation can cause the ferritin level in the serum of patients with iron deficiency to increase into the normal range. Ferritin is an acute-phase reactant that is thought to play a role in the body’s defense against oxidative stress and inflammation. Increased ferritin values can also be observed in malignant disease, including acute leukemia; Hodgkin’s disease; and carcinoma of the lung, colon, liver, and prostate. Consequently, serum ferritin in the normal range reflects iron sufficiency only in the absence of these conditions.